Что такое симистор и как с его помощью управлять нагрузкой

Для управления мощными нагрузками в цепях переменного тока часто используются электромагнитные реле. Контактные группы этих приборов служат дополнительным источником ненадежности из-за склонности к обгоранию, привариванию. Также недостатком выглядит возможность искрения при коммутации, что в некоторых случаях требует дополнительных мер безопасности. Поэтому предпочтительнее выглядят электронные ключи. Один из вариантов такого ключа выполняется на симисторах.

Внешний вид тиристора симметричного низкочастотного штыревого исполнения ТС122-25-12.

Что такое симистор и для чего нужен

В силовой электронике в качестве управляемого коммутирующего элемента часто применяются один из видов тиристоров — тринисторы. Их преимущества:

  • отсутствие контактной группы;
  • отсутствие вращающихся и движущихся механических элементов;
  • небольшая масса и габариты;
  • длительный ресурс, независящий от количества циклов включения-выключения;
  • невысокая стоимость;
  • высокое быстродействие и бесшумная работа.

Но при применении тринисторов в цепях переменного тока проблемой становится их односторонняя проводимость. Чтобы тринистор пропускал ток в двух направлениях, приходится идти на ухищрения в виде параллельного включения во встречном направлении двух тринисторов, управляемых одновременно. Логичным выглядит объединение этих двух тринисторов в одной оболочке для удобства монтажа и уменьшения габаритов. И этот шаг был сделан в 1963 году, когда советские ученые и специалисты General Electric почти одновременно подали заявки на регистрацию изобретения симметричного тринистора – симистора (в зарубежной терминологии триака, triac – triode for alternative current).

Структура триака.

На самом деле симистор не является в буквальном смысле двумя тринисторами, помещенными в один корпус.

Вольта-амперная характеристика симистора. Вся система реализована на одном кристалле с различными зонами p- и n- проводимостей, и эта структура не симметрична (хотя вольт-амперная характеристика триака имеет симметрию относительно начала координат и представляет собой отзеркаленную ВАХ тринистора). И в этом состоит принципиальное отличие симистора от двух тринисторов, каждый из которых должен управляться положительным, по отношению к катоду, током.

У симистора по отношению к направлению пропускаемого тока анода и катода нет, но по отношению к управляющему электроду эти выводы неравнозначны.  В литературе встречаются термины «условный катод» (МТ1, А1) и «условный анод» (МТ2, А2). Ими удобно пользоваться для описания работы триака.

При подаче полуволны любой полярности, прибор сначала заперт (красный участок ВАХ). Также, как и у тринистора, отпирание триака может произойти при превышении порогового уровня напряжения при любой полярности волны синусоиды (синий участок). В электронных ключах это явление (динисторный эффект), скорее, вредное. Его надо избегать при выборе режима работы. Открывание триака происходит подачей тока в управляющий электрод. Чем больше ток, тем раньше откроется ключ (красный штриховой участок). Этот ток создается приложением напряжения между управляющим электродом и условным катодом. Это напряжение должно быть или отрицательным, или совпадать по знаку с напряжением, приложенным между МТ1 и МТ2.

При определенном значении тока, симистор открывается сразу и ведет себя как обычный диод – вплоть до запирания (зеленый штриховой и сплошной участки). Совершенствование технологий ведет к уменьшению потреблённого тока для полного отпирания симистора. У современных модификаций он составляет до 60 мА и ниже. Но увлекаться снижением тока в реальной схеме не следует – это может привести к нестабильному открыванию триака.

Закрывание, как и у обычного тринистора, происходит при снижении тока до определенного предела (почти до нуля). В цепи переменного тока это происходит при очередном прохождении через ноль, после чего потребуется снова подать управляющий импульс. В цепях постоянного тока управляемое запирание симистора требует громоздких технических решений.

Особенности и ограничения

Существуют ограничения применения симистора при коммутации реактивной (индуктивной или ёмкостной) нагрузки. При наличии такого потребителя в цепи переменного тока, фазы напряжения и тока сдвинуты относительно друг друга. Направление сдвига зависит от характера реактивности, а величина – от величины реактивной составляющей. Уже сказано, что триак выключается в момент перехода тока через ноль. А напряжение между MT1 и МТ2 в этот момент может быть достаточно большим. Если скорость изменения напряжения dU/dt при этом превысит пороговую величину, то симистор может не закрыться. Чтобы избежать этого эффекта, параллельно силовому тракту симистора включают варисторы. Их сопротивление зависит от приложенного напряжения, и они ограничивают скорость изменения разности потенциалов. Того же эффекта можно добиться применением RC-цепочки (снаббера).

Опасность от превышения скорости нарастания тока при коммутации нагрузки связана с конечным временем отпирания симистора. В момент, когда триак ещё не закрылся, может оказаться, что к нему приложено большое напряжение и одновременно через силовой тракт протекает достаточно большой сквозной ток. Это может привести к выделению на приборе большой тепловой мощности, и кристалл может перегреться. Для устранения этого дефекта надо по возможности компенсировать реактивность потребителя последовательным включением в цепь реактивности примерно той же величины, но противоположного знака.

Также надо иметь в виду, что в открытом состоянии на симисторе падает около 1-2 В. Но так как область применения – мощные высоковольтные ключи, это свойство на практическое применение триаков не влияет. Потеря 1-2 вольт в 220-вольтовой цепи сравнима с погрешностью измерения напряжения.

Примеры использования

Основная область использования триака – ключ в цепях переменного тока. Принципиальных ограничений для применения симистора в качестве ключа постоянного тока нет, но и смысла в этом нет. В этом случае проще использовать более дешевый и распространенный тринистор.

Как и любой ключ, симистор включается в цепь последовательно с нагрузкой. Включением и выключением триака управляется подача напряжения на потребителя.

Схема включения симистора в качестве ключа в цепях переменного тока.

Также симистор можно применять в качестве регулятора напряжения на нагрузках, которым не важна форма напряжения (например, лампы накаливания или термоэлектронагреватели). В этом случае схема управления выглядит так.

Схема использования симистора, в качестве регулятора напряжения.

Здесь на резисторах R1, R2 и конденсаторе С1 организована фазовращающая цепь. Регулировкой сопротивления добиваются сдвига начала импульса относительно перехода сетевого напряжения через ноль. За формирование импульса отвечает динистор с напряжением открывания около 30 вольт. При достижении этого уровня он открывается и пропускает ток на управляющий электрод триака. Очевидно, что этот ток совпадает по направлению с током через силовой тракт симистора. Некоторые производители выпускают полупроводниковые приборы под названием Quadrac. У них в одном корпусе расположены симистор и динистор в цепи управляющего электрода.

Такая схема проста, но ток её потребления имеет резко несинусоидальную форму, при этом в питающей сети создаются помехи. Для их подавления надо использовать фильтры – хотя бы простейшие RC-цепочки.

Достоинства и недостатки

Достоинства симистора совпадают с плюсами тринистора, описанными выше. К ним надо лишь добавить возможность работы в цепях переменного тока и простое управление в таком режиме. Но имеются и минусы. В основном они касаются области применения, которая ограничена реактивной составляющей нагрузки. Предложенные выше меры защиты применить не всегда возможно. Также к недостаткам надо отнести:

  • повышенную чувствительность к шумам и помехам в цепи управляющего электрода, которая может вызвать ложные срабатывания;
  • необходимость отведения тепла от кристалла — обустройство радиаторов компенсирует небольшие габариты прибора, и для коммутации мощных нагрузок использование контакторов и реле становится предпочтительным;
  • лимитирование по рабочей частоте — оно не имеет значения при работе на промышленных частотах 50 или 100 Гц, но ограничивает применение в преобразователях напряжения.

Для грамотного применения симисторов необходимо знать не только принципы работы прибора, но и его недостатки, определяющие границы применения триаков. Только в этом случае разработанный прибор будет работать долго и надежно.

 

Похожие статьи:
Ссылка на основную публикацию
Adblock
detector