Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

Температура — один из основных физических параметров. Измерять и контролировать его важно как в бытовой жизни, так и на производстве. Для этого существует множество специальных устройств. Термометр сопротивления — один из самых распространенных приборов, активно применяющийся в науке и промышленности. Сегодня мы расскажем что такое термометр сопротивления, его преимущества и недостатки, а также разберемся в различных моделях.

Термометр сопротивления - датчик для измерения температуры: что это такое, описание и виды

Область применения

Термометр сопротивления — это устройство, предназначенное для измерения температуры твердых, жидких и газообразных сред. Также его используют и при измерении температуры сыпучих веществ.

Свое место термометр сопротивления нашел в газо- и нефтедобыче, металлургии, энергетике, сфере ЖКХ и многих других отраслях.

ВАЖНО! Термометры сопротивления можно использовать как в нейтральных средах, так и в агрессивных. Это способствует распространению прибора в химической промышленности.

Обратите внимание! Для измерения температур в промышленности также используют термопары, про них подробнее узнаете из нашей статьи про термопары.

Термометр сопротивления - датчик для измерения температуры: что это такое, описание и виды

Виды датчиков и их характеристики

Измерение температуры термометром сопротивления происходит с помощью одного или нескольких чувствительных элементов сопротивления и соединительных проводов, которые надежно спрятаны в защитном корпусе.

Классификация ТС происходит именно по типу чувствительного элемента.

Металлический термометр сопротивления по ГОСТ 6651-2009

Согласно ГОСТ 6651-2009 выделяют группу металлических термометров сопротивления, то есть ТС, чей чувствительный элемент — это небольшой резистор из металлической проволоки или пленки.

Платиновые измерители температуры

Термометр сопротивления - датчик для измерения температуры: что это такое, описание и виды

Платиновые ТС считаются самым распространёнными среди других видов, поэтому их часто устанавливают для контроля важных параметров. Диапазон измерения температуры лежит от -200 °С до 650 °С. Характеристика близка к линейной функции. Один из самых распространённых видов — Pt100 (Pt — платиновый, 100 — означает 100 Ом при 0 °С).

ВАЖНО! Основной недостаток этого устройства — дороговизна за счет использования драгоценного металла в составе.

Никелевые термометры сопротивления

Никелевые ТС почти не используются в производстве за счет узкого температурного диапазона (от -60 °С до 180 °С) и сложностей эксплуатации, однако, следует отметить, что именно они имеют самый высокий температурный коэффициент 0,00617 °С-1.

Ранее такие датчики использовались в кораблестроении, однако, сейчас в этой отрасли их заменили на платиновые ТС.

Медные датчики (ТСМ)

Казалось бы, у медных датчиков диапазон использования еще уже, чем у никелевых (всего от -50 °С до 170 °С), но, тем не менее, именно они являются более популярным типом ТС.

Секрет в дешевизне прибора. Медные чувствительные элементы просты и неприхотливы в использовании, а также отлично подходят для измерения невысоких температур или сопутствующих параметров, например, температуры воздуха в цехе.

Срок службы такого устройства невелик, однако, и средняя стоимость медной ТС не слишком бьет по карману (около 1 тыс. рублей).

Термометр сопротивления - датчик для измерения температуры: что это такое, описание и виды

Терморезисторы

Терморезисторы — это термометр сопротивления, чей чувствительный элемент сделан из полупроводника. Это может быть оксид, галогенид или другие вещества с амфотерными свойствами.

Преимуществом данного прибора является не только высокий температурный коэффициент, но и возможность придать любую форму будущему изделию (от тонкой трубки до устройства длиной в несколько микрон). Как правило терморезисторы рассчитаны для измерения температуры от -100 °С до +200 °С.

Различают два вида терморезисторов:

  • термисторы — имеют отрицательный температурный коэффициент сопротивления, то есть при росте температуры, сопротивление уменьшается;
  • позисторы — имеют положительный температурный коэффициент сопротивления, то есть при увеличении температуры, сопротивление также возрастает.

Градуировочные таблицы термометров сопротивления

Градуировочные таблицы — это сводная сетка, по которой можно легко определить при какой температуре термометр будет иметь определенное сопротивление. Такие таблицы помогают работникам КИПиА оценить значение измеряемой температуры по определённому значению сопротивления.

В рамках этой таблицы существуют специальные обозначения ТС. Их вы можете увидеть в верхней строчке. Цифра означает значение сопротивления датчика при 0°С, а буква металл, из которого оно создано.

Для обозначения металла используют:

  • П или Pt — платина;
  • М — медь;
  • N — никель.

Например, 50М — это медный ТС, с сопротивлением 50 Ом при 0 °С.

Ниже представлен фрагмент градуировочной таблицы термометров.

50М (Ом)100М (Ом)50П (Ом)100П (Ом)500П (Ом)
-50 °С39.378.640.0180.01401.57
0 °С5010050100500
50 °С60.7121.459.7119.41193.95
100 °С71.4142.869.25138.51385
150 °С82.1164.278.66157.311573.15

Класс допуска

Класс допуска не стоит путать с понятием класса точности. С помощью термометра мы не напрямую измеряем и видим результат измерения, а передаем на барьеры или вторичные приборы значение сопротивления соответствующее фактической температуры. Именно поэтому введено новое понятие.

Класс допуска — это разница между фактической температурой тела и температурой, которую получили при измерении.

Существует 4 класса точности ТС (от наиболее точного к приборам с большей погрешностью):

  • АА;
  • А;
  • B;
  • С.

Приведем фрагмент таблицы классов допуска, полную версию вы можете увидеть в ГОСТ 6651-2009.

Класс точностиДопуск, °СТемпературный диапазон, °С
Медный ТСПлатиновый ТСНикелевый ТС
АА±(0,1 + 0,0017 |t|)-от -50 °С до +250 °С-
А±(0,15+0,002 |t|)от -50 °С до +120 °Сот -100 °С до +450 °С-
В± (0,3 + 0,005 |t|)от -50 °С до +200 °Сот -195 °С до +650 °С-
С±(0,6 + 0,01 |t|)от -180 °С до +200 °Сот -195 °С до +650 °С-60 °С до +180 °С

Схема подключений

Для того, чтобы узнать значение сопротивления его надо измерить. Сделать это можно с помощью включения его в измерительную цепь. Для этого используют 3 типа схем, которые отличаются между собой количеством проводов и достигаемой точностью измерений:

  • 2-проводная цепь. Содержит минимальное количество проводов, а значит, самый дешевый вариант. Однако, при выборе данной схемы достичь оптимальной точности измерений не получится — к сопротивлению термометра будет прибавляться сопротивление используемых проводов, которые и будут вносить погрешность, зависимую от длины проводов. В промышленности такая схема применяется редко. Используется лишь для измерений, где не важна особая точность, а датчик находится в непосредственной близости от вторичного преобразователя. 2-проводная схема изображена на левом рисунке.
  • 3-проводная цепь. В отличии от предыдущего варианта здесь добавляется дополнительный провод, накоротко соединённый с одним из двух других измерительных. Его основная цель — возможность получить сопротивление подключенных проводов и вычесть это значение (компенсировать) из измеренного значения от датчика. Вторичный прибор, кроме основного измерения, дополнительно измеряет сопротивление между замкнутыми проводами, получая тем самым значение сопротивления проводов подключения от датчика до барьера или вторичника. Так как провода замкнуты, то это значение должно быть равно нулю, но по факту из-за большой длины проводов, это значение может достигать нескольких Ом. Далее эта погрешность вычитается из измеренного значения, получая более точные показания, за счёт компенсации сопротивления проводов. Такое подключение применяется в большинстве случаев, поскольку является компромиссом между необходимой точностью и приемлемой ценой. 3-х проводная схема изображена на центральном рисунке.
  • 4-проводная цепь. Цель такая же, что и при использовании трехпроводной схемы, но компенсация погрешности идёт обоих измерительных проводов. В трехпроводной схеме значение сопротивления обоих измерительных проводов принимается за одинаковое значение, но по факту оно может незначительно отличаться. За счет добавления ещё одного четвёртого провода в четырехпроводной схеме (закороченного со вторым измерительным проводом), удается получить отдельно его значение сопротивления и почти полностью компенсировать всё сопротивление от проводов. Однако, данная цепь является более дорогой, так как требуется четвёртый проводник и поэтому реализуется или на предприятиях с достаточным финансированием, или при измерении параметров, где нужна большая точность. 4-х проводную схему подключений вы можете увидеть на правом рисунке.

Термометр сопротивления - датчик для измерения температуры: что это такое, описание и виды

Обратите внимание! У датчика Pt1000 уже при нуле градусов сопротивление равно 1000 Ом. Увидеть их можно, например, на паровой трубе, где измеряемая температура равна 100-160 °С, что соответствует примерно 1400-1600 Ом. Сопротивление же проводов в зависимости от длины равно примерно 3-4 Ом, т.е. на погрешность они практически не влияют и смысла в использовании трёх или четырёх проводной схемы подключения особо нет.

Преимущества и недостатки термометров сопротивления

Как и любой прибор, использование термометров сопротивления имеет ряд преимуществ и недостатков. Рассмотрим их.

Преимущества:

  • практически линейная характеристика;
  • измерения достаточно точны (погрешность не более 1°С);
  • некоторые модели дешёвые и просты в использовании;
  • взаимозаменяемость приборов;
  • стабильность работы.

Недостатки:

  • малый диапазон измерений;
  • довольно низкая предельная температура измерений;
  • необходимость использования специальных схем подключения для повышенной точности, что увеличивает стоимость внедрения.

Термометр сопротивления — распространенное устройство практически во всех отраслях промышленности. Этим прибором удобно измерять невысокие температуры, не опасаясь за точность полученных данных. Термометр не отличается особой долговечностью, однако, приемлемая цена и простота замены датчика перекрывают этот небольшой недостаток.

Похожие статьи:
Ссылка на основную публикацию
OdinElectric.ru - Сайт об электрике и для электриков