В чём отличие проводников от диэлектриков, их свойства и сфера применения

Проводники и диэлектрики — физические вещества, имеющие различную степень электропроводимости и по-разному реагирующие на воздействие электрического поля. Противоположные свойства материалов широко используются во всех сферах электротехники.

Таблица с примерами проводников и диэлектриков

Что такое проводники и диэлектрики

Проводники — вещества, со свободными электрическими зарядами, способными направленно перемещаться под воздействием внешнего электрического поля. Такими особенностями обладают:

  • металлы и их расплавы;
  • природный углерод (каменный уголь, графит);
  • электролиты — растворы солей, кислот и щелочей;
  • ионизированный газ (плазма).

Главное свойство материалов: свободные заряды — электроны у твёрдых проводников и ионы у растворов и расплавов, перемещаясь по всему объёму проводника проводят электрический ток. Под воздействием приложенного к проводнику электрического напряжения создаётся ток проводимости. Удельное сопротивление и электропроводимость — основные показатели материала.

Свойства диэлектрических материалов противоположны проводникам электричества. Диэлектрики (изоляторы) — состоят из нейтральных атомов и молекул. Они не имеют способности к перемещению заряженных частиц под воздействием электрического поля. Диэлектрики в электрическом поле накапливают на поверхности нескомпенсированные заряды. Они образуют электрическое поле, направленное внутрь изолятора, происходит поляризация диэлектрика.

В результате поляризации, заряды на поверхности диэлектрика стремятся уменьшить электрическое поле. Это свойство электроизоляционных материалов называется диэлектрической проницаемостью диэлектрика.

Характеристики и физические свойства материалов

Параметры проводников определяют область их применения. Основные физические характеристики:

  • удельное электрическое сопротивление — характеризует способность вещества препятствовать прохождению электрического тока;
  • температурный коэффициент сопротивления — величина, характеризующая изменение показателя в зависимости от температуры;
  • теплопроводность — количество тепла, проходящее в единицу времени через слой материала;
  • контактная разность потенциалов — происходит при соприкосновении двух разнородных металлов, применяется в термопарах для измерения температуры;
  • временное сопротивление разрыву и относительное удлинение при растяжении — зависит от вида металла.

При охлаждении до критических температур удельное сопротивление проводника стремится к нулю. Это явление называется сверхпроводимостью.

Свойства, характеризующие проводник:

  • электрические — сопротивление и электропроводимость;
  • химические — взаимодействие с окружающей средой, антикоррозийность, способность соединения при помощи сварки или пайки;
  • физические — плотность, температура плавления.

Особенность диэлектриков — противостоять воздействию электротока. Физические свойства электроизоляционных материалов:

  • диэлектрическая проницаемость — способность изоляторов поляризоваться в электрическом поле;
  • удельное объёмное сопротивление;
  • электрическая прочность;
  • тангенс угла диэлектрических потерь.

Изоляционные материалы характеризуются по следующим параметрам:

  • электрические — величина пробивного напряжения, электрическая прочность;
  • физические — термостойкость;
  • химические — растворимость в агрессивных средствах, влагостойкость.

Виды и классификация диэлектрических материалов

Изоляторы подразделяются на группы по нескольким критериям.

Классификация по агрегатному состоянию вещества:

  • твёрдые — стекло, керамика, асбест;
  • жидкие — растительные и синтетические масла, парафин, сжиженный газ, синтетические диэлектрики (кремний- и фторорганические соединения хладон, фреон);
  • газообразные — воздух, азот, водород.

Диэлектрики могут иметь природное или искусственное происхождение, иметь органическую или синтетическую природу.

К органическим природным изоляционным материалам относят растительные масла, целлюлоза, каучук. Они отличаются низкой термо и влагостойкостью, быстрым старением. Синтетические органические материалы — различные виды пластика.

К неорганическим диэлектрикам естественного происхождения относятся: слюда, асбест, мусковит, флогопит. Вещества устойчивы к химическому воздействию, выдерживают высокие температуры. Искусственные неорганические диэлектрические материалы — стекло, фарфор, керамика.

Почему диэлектрики не проводят электрический ток

Низкая проводимость обусловлена строением молекул диэлектрика. Частицы вещества тесно связаны друг с другом, не могут покинуть пределы атома и перемещаться по всему объёму материала. Под воздействием электрического поля частицы атома способны слегка расшатываться — поляризоваться.

В зависимости от механизма поляризации, диэлектрические материалы подразделяются на:

  • неполярные — вещества в различном агрегатном состоянии с электронной поляризацией (инертные газы, водород, полистирол, бензол);
  • полярные — обладают дипольно-релаксационной и электронной поляризацией (различные смолы, целлюлоза, вода);
  • ионные — твёрдые диэлектрики неорганического происхождения (стекло, керамика).

Диэлектрические свойства вещества непостоянны. Под воздействием высокой температуры или повышенной влажности электроны отрываются от ядра и приобретают свойства свободных электрических зарядов. Изоляционные качества диэлектрика в этом случае понижаются.

Надёжный диэлектрик — материал с малым током утечки, не превышающим критическую величину и не нарушающим работу системы.

Где применяются диэлектрики и проводники

Материалы применяются во всех сферах деятельности человека, где используется электрический ток: в промышленности, сельском хозяйстве, приборостроении, электрических сетях и бытовых электроприборах.

Выбор проводника обусловлен его техническими характеристиками. Наименьшим удельным сопротивлением обладают изделия из серебра, золота, платины. Использование их ограничено космическими и военными целями из-за высокой себестоимости. Медь и алюминий проводят ток несколько хуже, но сравнительная дешевизна привела к их повсеместному применению в качестве проводов и кабельной продукции.

Чистые металлы без примесей лучше проводят ток, но в ряде случаев требуется использовать проводники с высоким удельным сопротивлением — для производства реостатов, электрических печей, электронагревательных приборов. Для этих целей используются сплавы никеля, меди, марганца (манганин, константан). Электропроводность вольфрама и молибдена в 3 раза ниже, чем у меди, но их свойства широко используются в производстве электроламп и радиоприборов.

Твёрдые диэлектрики — материалы, обеспечивающие безопасность и бесперебойную работу токопроводящих элементов. Они используются в качестве электроизоляционного материала, не допуская утечки тока, изолируют проводники между собой, от корпуса прибора, от земли. Примером такого изделия являются диэлектрические перчатки, про которые написано в нашей статье.

Жидкие диэлектрики используют в конденсаторах, силовых кабелях, циркулирующих системах охлаждения турбогенераторов и высоковольтных масляных выключателей. Материалы применяют в качестве заливки и пропитки.

Газообразные изоляционные материалы. Воздух — естественный изолятор, одновременно обеспечивающий отвод тепла. Азот применяется в местах, где недопустимы окислительные процессы. Водород применяется в мощных генераторах с высокой теплоёмкостью.

Слаженная работа проводников и диэлектриков обеспечивает безопасную и стабильную работу оборудования и сетей электроснабжения. Выбор конкретного элемента для поставленной задачи зависит от физических свойств и технических параметров вещества.

Похожие статьи

Ссылка на основную публикацию
Adblock
detector