Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Помещенный в магнитное поле проводник, через который пропущен электрический ток, испытывает воздействие силы Ампера F_A, а её величина может быть подсчитана по следующей формуле:

F_A=B\cdot I\cdot l\cdot sin\alpha                             (1)

где I и l – сила тока и длина проводника, B – индукция магнитного поля, \alpha – угол между направлениями силы тока и магнитной индукции. Почему же это происходит?

Сила Лоренца. Движение заряженной частицы в магнитном поле.

Что такое сила Лоренца — определение, когда возникает, получение формулы

Известно, что электрический ток – это упорядоченное перемещение заряженных частиц. Установлено также, что во время движения в магнитном поле каждая из этих частиц подвергается действию силы. Для возникновении силы требуется, чтобы частица находилась в движении.

Сила Лоренца – это сила, которая действует на электрически заряженную частицу при её движении в магнитном поле. Её направление ортогонально плоскости, в которой лежат векторы скорости частицы и напряженности магнитного поля. Равнодействующая сил Лоренца и есть сила Ампера. Зная ее, можно вывести формулу для силы Лоренца.

Время, требуемое для прохождения частицей отрезка проводника, t = \frac {l}{v}, где l – длина отрезка, v – скорость частицы. Суммарный заряд, перенесенный за это время через поперечное сечение проводника, Q = I\cdot t. Подставив сюда значение времени из предыдущего равенства, имеем

Q = \frac {I\cdot l}{v}                             (2)

В то же время F_A=F_L\cdot N, где N – количество частиц, находящееся в рассматриваемом проводнике. При этом N = \frac {Q}{q}, где q – заряд одной частицы. Подставив в формулу значение Q из (2), можно получить:

N = \frac {I\cdot l}{v\cdot q}

Таким образом,

F_A=F_L\cdot \frac {I\cdot l}{v\cdot q}

Используя (1), предыдущее выражение можно записать как

B\cdot I\cdot l\cdot sin\alpha = F_L\cdot \frac {I\cdot l}{v\cdot q}

После сокращений и переносов появляется формула для вычисления силы Лоренца

F_L = q\cdot v\cdot B\cdot sin\alpha

С учетом того, что формула записана для модуля силы, ее необходимо записать так:

F_L = |q|\cdot v\cdot B\cdot sin\alpha                             (3)

Поскольку sin\alpha = sin(180^{\circ} - \alpha), то для вычисления модуля силы Лоренца неважно, куда направлена скорость, – по направлению силы тока или против, – и можно сказать, что \alpha – это угол, образуемый векторами скорости частицы и магнитной индукции.

Запись формулы в векторном виде будет выглядеть следующим образом:

\vec{F_L} = q\cdot [\vec{v}\times \vec{B}]

[\vec{v}\times \vec{B}] – это векторное произведение, результатом которого является вектор с модулем, равным v\cdot B\cdot sin\alpha.

Исходя из формулы (3), можно сделать вывод о том, что сила Лоренца является максимальной в случае перпендикулярности направлений электрического тока и магнитного поля, то есть при \alpha = 90^{\circ}, и исчезать при их параллельности (\alpha = 0^{\circ}).

Необходимо помнить, что для получения правильного количественного ответа – например, при решении задач, – следует пользоваться единицами системы СИ, в которой магнитная индукция измеряется в теслах (1 Тл = 1 кг·с−2·А−1), сила – в ньютонах (1 Н = 1 кг·м/с2), сила тока – в амперах, заряд в кулонах (1 Кл = 1 А·с), длина – в метрах, скорость – в м/с.

Определение направления силы Лоренца с помощью правила левой руки

Поскольку в мире макрообъектов сила Лоренца проявляется как сила Ампера, для определения ее направления можно пользоваться правилом левой руки.

Определение направления действия силы Лоренца по правилу левой руки.

Нужно поставить левую руку так, чтобы раскрытая ладонь находилась перпендикулярно и навстречу линиям магнитного поля, четыре пальца следует вытянуть в направлении силы тока, тогда сила Лоренца будет направлена туда, куда указывает большой палец, который должен быть отогнут.

Движение заряженной частицы в магнитном поле

В простейшем случае, то есть при ортогональности векторов магнитной индукции и скорости частицы сила Лоренца, будучи перпендикулярной к вектору скорости, может менять только её направление. Величина скорости, следовательно, и энергия будут оставаться неизменными. Значит, сила Лоренца действует по аналогии с центростремительной силой в механике, и частица перемещается по окружности.

В соответствии со II законом Ньютона (F = m\cdot a) можно определить радиус вращения частицы:

N = \frac {m\cdot v}{q\cdot B}.

Необходимо обратить внимание, что с изменением удельного заряда частицы (\frac {q}{m}) меняется и радиус.

При этом период вращения T = \frac {2\cdot \pi\cdot r}{v} = \frac {2\cdot \pi\cdot m}{q\cdot B}. Он не зависит от скорости, значит, взаимное положение частиц с различными скоростями будет неизменным.

Движение заряженной частицы в однородном магнитном поле.

В более сложном случае, когда угол между скоростью частицы и напряженностью магнитного поля является произвольным, она будет перемещаться по винтовой траектории – поступательно за счет составляющей скорости, направленной параллельно полю, и по окружности под влиянием ее перпендикулярной составляющей.

Применение силы Лоренца в технике

Кинескоп

Кинескоп, стоявший до недавнего времени, когда на смену ему пришел LCD-экран (плоский), в каждом телевизоре, не смог бы работать, не будь силы Лоренца. Для формирования на экране телевизионного растра из узкого потока электронов служат отклоняющие катушки, в которых создается линейно изменяющееся магнитное поле. Строчные катушки перемещают электронный луч слева направо и возвращают обратно, кадровые отвечают за вертикальное перемещение, двигая бегающий по горизонтали луч сверху вниз. Такой же принцип используется в осциллографах – приборах, служащих для изучения переменного электрического напряжения.

Масс-спектрограф

Масс-спектрограф – прибор, использующий зависимость радиуса вращения заряженной частицы от ее удельного заряда. Принцип его работы следующий:

Источник заряженных частиц, которые набирают скорость с помощью созданного искусственно электрического поля, с целью исключения влияния молекул воздуха помещается в вакуумную камеру. Частицы вылетают из источника и, пройдя по дуге окружности, ударяются в фотопластинку, оставляя на ней следы. В зависимости от удельного заряда меняется радиус траектории и, значит, точка удара. Этот радиус легко измерить, а зная его, можно вычислить массу частицы. С помощью масс-спектрографа, например, изучался состав лунного грунта.

Циклотрон

Независимость периода, а значит, и частоты вращения заряженной частицы от её скорости в присутствии магнитного поля используется в приборе, называемом циклотроном и предназначенном для разгона частиц до высоких скоростей. Циклотрон – это два полых металлических полуцилиндров – дуанта (по форме каждый из них напоминает латинскую букву D), помещенных прямыми сторонами навстречу друг другу на небольшом расстоянии.

Циклотрон - применение силы Лоренца.

Дуанты помещаются в постоянное однородное магнитное поле, а между ними создается переменное электрическое поле, частота которого равна частоте вращения частицы, определяемой напряженностью магнитного поля и удельным зарядом. Попадая дважды за период вращения (при переходе из одного дуанта в другой) под воздействие электрического поля, частица каждый раз ускоряется, увеличивая при этом радиус траектории, и в определенный момент, набрав нужную скорость, вылетает из прибора через отверстие. Таким способом можно разогнать протон до энергии в 20 МэВ (мегаэлектронвольт).

Магнетрон

Устройство, называемое магнетроном, который установлен в каждой микроволновой печи, – еще один представитель приборов, использующих силу Лоренца. Магнетрон служит для создания мощного СВЧ-поля, которое разогревает внутренний объем печи, куда помещается пища. Магниты, входящие в его состав, корректируют траекторию движения электронов внутри прибора.

Магнитное поле Земли

А в природе сила Лоренца играет крайне важную для человечества роль. Её наличие позволяет магнитному полю Земли защитить людей от смертоносного ионизирующего излучения космоса. Поле не дает возможности заряженным частицам бомбардировать поверхность планеты, заставляя их менять направление движения.

Похожие статьи

Ссылка на основную публикацию
Adblock
detector