Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз

Осциллограф — устройство, демонстрирующие силу тока, напряжение, частоты и сдвиг фаз электрической цепи. Прибор отображает соотношение времени и интенсивности электрического сигнала. Все значения изображены при помощи простого двумерного графика.

Осциллограф цифровой запоминающий GW Instek GDS-71104B.

Для чего предназначен осциллограф

Осциллограф используется электронщиками и радиолюбителями для того, чтобы измерить:

  • амплитуду электрического сигнала — соотношение напряжения и времени;
  • проанализировать сдвиг фаз;
  • увидеть искажение электрического сигнала;
  • на основе результатов вычислить частоту тока.

Несмотря на то, что осциллограф демонстрирует характеристики анализируемого сигнала, чаще его используют для выявления процессов происходящих в электрической цепи. Благодаря осциллограмме специалисты получают следующую информацию:

  • форму периодического сигнала;
  • значение положительной и отрицательной полярности;
  • диапазон изменения сигнала во времени;
  • длительность положительного и отрицательного полупериода.

Большинство из этих данных можно получить при помощи вольтметра. Однако тогда придётся производить замеры с частотностью в несколько секунд. При этом велик процент погрешности вычислений. Работа с осциллографом значительно экономит время получения необходимых данных.

Принцип действия осциллографа

Осциллограф выполняет замеры при помощи электронно-лучевой трубки. Это лампа, которая фокусирует анализируемый ток в луч. Он попадает на экран прибора, отклоняясь в двух перпендикулярных направлениях:

  • вертикальное – показывает исследуемое напряжение;
  • горизонтальное – демонстрирует затраченное время.

Электронная трубка осциллографа.

За отклонение луча отвечают две пары пластин электронно-лучевой трубки. Те, что расположены вертикально,  всегда находятся под напряжением. Это помогает распределять разнополюсные значения. Положительное притяжение отклоняется вправо, отрицательное — влево. Таким образом, линия на экране прибора движется слева направо с постоянной скоростью.

На горизонтальные пластины также действует электрический ток, что отклоняет демонстрирующий показатель напряжения луча. Положительный заряд — вверх, отрицательный — вниз. Так на дисплее устройства появляется линейный двухмерный график, который называется осциллограммой.

Расстояние, которое проходит луч от левого до правого края экрана называется развёрткой. Линия по горизонтали отвечает за время измерения. Помимо стандартного линейного двухмерного графика существует также круглые и спиральные развёртки. Однако пользоваться ими не так удобно как классическими осциллограммами.

Классификация и виды

Различают два основных вида осциллографов:

  • аналоговые — аппараты для измерения средних сигналов;
  • цифровые — приборы преобразовывают получаемое значение измерений в «цифровой» формат для дальнейшей передачи информации.

По принципу действия существуют следующая классификация:

  1. Универсальные модели.
  2. Специальное оборудование.

Наиболее популярными являются универсальные устройства. Эти осциллографы используют для анализа различных видов сигналов:

  • гармонических;
  • одиночных импульсов;
  • импульсных пачек.

Универсальные приборы предназначены для разнообразных электрических устройств. Они позволяют измерять сигналы в диапазоне от нескольких наносекунд. Погрешность измерений составляет 6-8%.

Универсальные осциллографы делятся на два основных вида:

  • моноблочные — имеют общую специализацию измерений;
  • со сменными блоками — подстраиваются под конкретную ситуацию и тип прибора.

Специальные устройства разрабатываются под определённый вид электрической техники. Так существуют осциллографы для радиосигнала, телевизионного вещания или цифровой техники.

Универсальные и специальные устройства делятся на:

  • скоростные – применяются в быстродействующих приборах;
  • запоминающие — аппараты, сохраняющие и воспроизводящие ранее сделанные показатели.

При выборе устройства следует внимательно изучить классификации и виды, чтобы приобрести прибор под конкретную ситуацию.

Устройство и основные технические параметры

Каждый прибор имеет ряд следующих технических характеристик:

  1. Коэффициент возможной погрешности при измерении напряжения (у большинства приборов это значение не превышает 3%).
  2. Значение линии развёртки устройства — чем больше эта характеристика, тем дольше временной промежуток наблюдения.
  3. Характеристика синхронизации, содержащая в себе: диапазон частот, максимальные уровни и нестабильность системы.
  4. Параметры вертикального отклонения сигнала с входной ёмкостью оборудования.
  5. Значения переходной характеристики, показывающие время нарастания и выброс.

Помимо перечисленных выше основных значений, у осциллографов присутствуют дополнительные параметры, в виде амплитудно-частотная характеристики, демонстрирующей зависимость амплитуды от частоты сигнала.

Цифровые осциллографы также обладают величиной внутренней памяти. Этот параметр отвечает за количество информации, которую аппарат может записать.

Как выполняются измерения

Экран осциллографа поделён на небольшие клетки, которые называются делениями. В зависимости от прибора каждый квадрат будет равен определённому значению. Наиболее популярное обозначение: одно деление – 5 единиц. Также на некоторых приборах присутствует ручка для управления масштабом графика, чтобы пользователям было удобнее и точнее производить измерения.

Прежде чем начать измерение любого рода следует присоединить осциллограф к электрической цепи. Щуп подключается на любой из свободных каналов (если в приборе, больше чем 1 канал) или на генератор импульсов, при его наличии в устройстве. После подключения на дисплее аппарата появятся различные изображения сигналов.

Если сигнал получаемый прибором обрывистый, то проблема заключается в присоединении щупа. Некоторые из них оборудованы миниатюрными винтами, которые необходимо закрутить. Также в цифровых осциллографах решает проблему обрывистого сигнала фикция автоматического позиционирования.

Измерение тока

При измерении тока цифровым осциллографом, следует узнать какой вид тока необходимо наблюдать. Осциллографы имеют два режима работы:

  • Direct Current («DC») для постоянного тока;
  • Alternating Current («АС») для переменного.

Постоянный ток измеряется при включённом режиме «Direct Current». Щупы аппарата следует подключить к блоку питания в прямом соответствии с полюсами. Чёрный крокодил присоединяется к минусу, красный — к плюсу.

На экране устройства появится прямая линия. Значение вертикальной оси будет соответствовать параметру постоянного напряжения. Силу тока можно вычислить согласно закону Ома (напряжение поделить на сопротивление).

Переменный ток представляет собой синусоиду, из-за того, что напряжение также переменно. Поэтому измерить его значение можно только в определённый промежуток времени. Параметр также вычисляется при помощи закона Ома.

Измерение напряжения

Чтобы измерить напряжение сигнала понадобится вертикальная ось координат линейного двухмерного графика. Из-за этого всё внимание будет уделено высоте осциллограммы. Поэтому перед началом наблюдения следует настроить экран более удобно для измерения.

Затем переводим аппарат в режим DC. Присоединяем щупы к цепи и наблюдаем результат. На дисплее аппарата появится прямая линия, значение которой будет соответствовать напряжению электрического сигнала.

Измерение частоты

Прежде чем, понять, как измерить частоту электрического сигнала, следует узнать, что такое период, так как эти два понятия взаимосвязаны. Один период – это наименьший промежуток времени, через который амплитуда начинает повторяться.

Увидеть период на осциллографе легче при помощи горизонтальной оси координат времени. Нужно лишь заметить, через какой промежуток времени линейный график начинает повторять свой рисунок. Началом периода лучше считать точки соприкосновения с горизонтальной осью, а концом повторения этой же координаты.

Чтобы удобнее измерить период сигнала, скорость развёртки уменьшают. В таком случае погрешность измерения не так высока.

Частота — это значение обратно пропорционально анализируемому периоду. То есть, чтобы измерить значение, нужно одну секунду времени поделить на количество периодов, происходящих за этот промежуток. Полученная частота измеряется в Герцах, стандарт для России — 50 Гц.

Измерение сдвига фаз

Сдвигом фазы считают — взаимное расположение двух колебательных процессов во времени. Параметр измеряется в долях периода сигнала, чтобы независимо от характера периода и частоты, одинаковые сдвиги фаз имели общее значение.

Первое что необходимо сделать перед измерением: выяснить какой из сигналов отстаёт от другого и затем определить значение знака параметра. Если ток идёт впереди, то параметр сдвига угла отрицательный. В случае, когда напряжение опережает — знак значения положительный.

Чтобы вычислить градус сдвига фаз следует:

  1. Умножить 360 градусов на число клеток сетки между началами периодов.
  2. Разделить полученный результат на число делений, занимаемых одним периодом сигнала.
  3. Подобрать отрицательный или положительный знак.

Измерять сдвиг фазы в аналоговом осциллографе неудобно, потому что выводящиеся на экраны графики имеют одинаковый цвет и масштаб. Для наблюдений такого рода используют либо цифровое устройство, либо двухканальные аппараты, чтобы разместить разные амплитуды на отдельный канал.

Похожие статьи

Ссылка на основную публикацию
Adblock
detector