Трансформаторы тока широко используются в современной энергетике как оборудование по изменению различных электрических параметров в аналогичные с сохранением основных значений. Работа оборудования базируется на законе индукции, который актуален для полей магнитного и электрического типа, меняющихся синусоидально. Трансформатор преображает первичное значение тока с соблюдением модуля и передачи угла пропорционально исходным данным. Выбирать оборудование требуется, исходя из сферы использования приборов и количества подключенных потребителей.
Содержание
Что такое трансформатор тока?
Данное оборудование используется в промышленности, городских коммуникациях и инженерных сетях, на производстве и в других сферах для подачи тока с определенными физическими параметрами. Подача напряжения производится на витки первичной обмотки, где в результате воздействия магнитного излучения образуется переменный ток. Это же излучение проходит по остальным виткам, за счет чего происходит движение сил ЭДС, а при закоротивших вторичных витках или при подключении к электроцепи в системе появляется вторичный ток.
Современные трансформаторы тока позволяют преобразовывать энергию с такими параметрами, чтобы ее применение не позволило нанести вред оборудованию, которое работает на ней. Кроме того, они дают возможность измерить повышенную нагрузку с максимальной безопасностью для техники и персонала, поскольку витки первичного и вторичного ряда имеют надежную изоляцию друг от друга.
Назначение трансформаторов
Определить, для чего нужен трансформатор тока, достаточно просто: сфера применения включает все отрасли, в которых происходит преобразование энергетических величин. Эти устройства относятся к числу вспомогательного оборудования, которое используется параллельно с измерительными приборами и реле при создании цепи переменного тока. В этих случаях трансформаторы преобразуют энергию для более удобной расшифровки параметров или соединения оборудования с разными характеристиками в одну цепь.
Также выделяют измерительную функцию трансформаторов: они служат для запуска электроцепей с повышенным напряжением, к которым требуется подключить измерительные приборы, но не представляется возможным сделать это напрямую. Основная задача таких трансформаторов – передача полученной информации о параметрах тока на приборы для измерительных манипуляций, которые подсоединены к обмотке вторичного типа. Также оборудование дает возможность контролировать ток в цепи: при использовании реле и достижении максимальных токовых параметров активируется защита, выключающая оборудование во избежание перегорания и нанесения вреда персоналу.
Принцип работы
Действие такого оборудования основано на законе индукции, согласно которому напряжение попадает на первичные витки и ток преодолевает создаваемое сопротивление обмотки, что вызывает формирование магнитного потока, передающегося на магнитопровод. Поток идет в перпендикулярном направлении относительно тока, что позволяет минимизировать потери, а при пересечении им витков вторичной обмотки активируется сила ЭДС. В результате ее воздействия в системе появляется ток, который сильнее сопротивления катушки, при этом напряжение на выходной части вторичных витков снижается.
Простейшая конструкция трансформатора, таким образом, включает сердечник из металла и пару обмоток, не соединенных друг с другом и выполненных в виде проводки с изоляцией. В некоторых случаях нагрузка идет только на первичные, а не вторичные витки: это так называемый холостой режим. Если же ко вторичной обмотке подсоединяют оборудование, потребляющее энергию, по виткам проходит ток, который создает электродвижущая сила. Параметры ЭДС обусловлены количеством витков. Соотношение электродвижущей силы для первичных и вторичных витков известно как коэффициент трансформации, вычисляется по отношению их числа. Регулировать напряжение для конечного потребителя энергии можно, изменяя число витков первичной либо вторичной обмотки.
Классификация трансформаторов тока
Существует несколько типов такого оборудования, которые разделяются по ряду критериев, включая назначение, метод монтажа, число ступеней преобразования и иные факторы. Перед тем как выбрать трансформатор тока, требуется учесть эти параметры:
- Назначение. По этому критерию выделяют измерительные, промежуточные и защищающие модели. Так, устройства промежуточного типа используются при подключении приборов для вычислительных действий в системах релейной защиты и прочих цепях. Отдельно выделяют лабораторные трансформаторы, которые обеспечивают повышенную точность показателей, имеют большое количество коэффициентов преобразования.
- Способ установки. Существуют трансформаторы для внешнего и внутреннего монтажа: они не только по-разному выглядят, но и имеют различные показатели устойчивости к внешним воздействиям (так, устройства для уличной эксплуатации имеют защиту от осадков и перепадов температур). Также выделяют накладные и портативные трансформаторы; последние имеют сравнительно небольшую массу и габариты.
- Тип обмотки. Трансформаторы бывают одно- и многовитковыми, катушечными, стержневыми, шинными. Отличаться может как первичная, так и вторичная обмотка, также отличия касаются изоляции (сухая, фарфоровая, бакелитовая, масляная, компаундовая и пр.).
- Уровень ступеней трансформации. Оборудование бывает одно- и двухступенчатым (каскадным), предел напряжения 1000 В может быть минимальным либо, напротив, максимальным.
- Конструкция. По этому критерию выделяют две разновидности трансформаторов тока – масляные и сухие. В первом случае витки обмотки и магнитопровод находятся в емкости, содержащей специальную маслянистую жидкость: она играет роль изоляции и позволяет регулировать рабочую температуру среды. Во втором случае охлаждение происходит воздушным путем, такие системы применяют в промышленных и жилых зданиях, поскольку масляные трансформаторы нельзя устанавливать внутри по причине повышенной пожарной опасности.
- Вид напряжения. Трансформаторы могут быть понижающими и повышающими: в первом случае напряжение на первичных витках снижено, а во втором – повышено.
- Еще один вариант классификации – выбор трансформатора тока по мощности. Этот параметр зависит от назначения оборудования, количества подключенных потребителей, их свойств.
Параметры и характеристики
При выборе такого оборудования требуется учитывать основные технические параметры, влияющие на спектр применения и стоимость. Главные качества:
- Номинальная нагрузка, или мощность: подбор по этому критерию можно сделать, воспользовавшись сравнительной таблицей характеристик трансформаторов. Значение параметра определяет другие токовые характеристики, поскольку строго нормируется и служит для определения нормального функционирования оборудования в выбранном классе точности.
- Номинальный ток. Этот показатель определяет, в течение какого периода прибор может функционировать, не перегреваясь до критичных температур. В трансформаторном оборудовании, как правило, заложен солидный запас по уровню нагрева, при перегрузке до 18-20% работа происходит в нормальном режиме.
- Напряжение. Показатель важен для качества обмоточной изоляции, обеспечивает бесперебойное функционирование техники.
- Погрешность. Это явление возникает по причине воздействия магнитного потока, показатель погрешности является разницей между точными данными первичного и вторичного тока. Усиление магнитного потока в трансформаторном сердечнике способствует пропорциональному возрастанию погрешности.
- Коэффициент трансформации, представляющий собой соотношение тока в первичных и во вторичных витках. Реальное значение коэффициента отличается от номинала на величину, равную степени потерь при преобразовании энергии.
- Предельная кратность, выраженная в отношении первичного тока в действительном виде к номиналу.
- Кратность тока, возникающего в витках обмотки вторичного типа.
Определяются ключевые данные трансформатора тока схемой замещения: она позволяет изучить характеристики оборудования в разных режимах, от холостого хода до полной нагрузки.
Главные показатели обозначают на корпусе прибора в виде специальной маркировки. Также она может содержать данные о способе подъема и монтажа оборудования, предостерегающие сведения о повышенном напряжении на вторичных витках (свыше 350 Вольт), информацию о наличии заземляющей площадки. Маркировка преобразователя энергии наносится в виде наклейки или с помощью краски.
https://www.youtube.com/watch?v=i42xNi4sUDU
Возможные неисправности
Как любое другое оборудование, трансформаторы время от времени выходят из строя, и им требуется квалифицированное обслуживание с диагностикой. Перед тем как проверить устройство, необходимо знать, какие бывают поломки, какие признаки им соответствуют:
- Неравномерный шум внутри корпуса, потрескивание. Это явление обычно говорит об обрыве заземляющего элемента, перекрытии на корпус с витков обмотки или ослаблении прессовки листов, служащих для магнитопровода.
- Слишком большой нагрев корпуса, увеличение силы тока на стороне потребления. Проблема может быть вызвана замыканием обмотки из-за износа или механического повреждения изоляционного слоя, частыми перегрузками, возникающими вследствие короткого замыкания.
- Трещины изоляторов, скользящие разряды. Они появляются при не выявленном до старта эксплуатации производственном браке, набросе инородных предметов и перекрытием между вводом фаз разного значения.
- Выбросы масла, в ходе которых разрушается мембрана выхлопной конструкции. Проблема объясняется межфазовым замыканием, происходящим по вине износа изоляции, снижением масляного уровня, перепадами напряжения или появлением сверхтоков при условии появления короткого замыкания сквозного типа.
- Протечки масляной жидкости из-под прокладок или в кранах трансформатора. Основные причины – некачественная сварка узлов, слабое уплотнение, разрушение прокладок или непритертые крановые пробки.
- Включение реле газозащиты. Такое явление возникает при разложении масла, которое происходит по причине обмоточного замыкания, обрыва цепи, выгорания контактов переключающего устройства или в случае замыкания на трансформаторный корпус.
- Выключение реле газовой защиты. Проблему вызывает активное разложение масляной жидкости в результате межфазового замыкания, перенапряжения внутренней или внешней части либо вследствие так называемого «пожара стали».
- Сработавшая дифференциальная защита. Эта неисправность появляется при пробое на вводный корпус, при перекрытии между фазами или в иных случаях.
Чтобы максимально повысить эффективность функциональности прибора, требуется регулярно выполнять поверку, используя тепловизор: оборудование позволяет диагностировать снижение качества контактов и уменьшение рабочей температуры. В ходе поверки специалисты выполняют следующий спектр манипуляций:
- Снятие показателей по напряжению и силе тока.
- Проверка нагрузки с использованием внешнего источника.
- Определение параметров в рабочей схеме.
- Вычисление коэффициента трансформации, сравнение и анализ показателей.
Расчет трансформатора
Основной принцип работы этого устройства определяется формулой U1/U2=n1/n2, элементы которой расшифровывают следующим образом:
- U1 и U2 – напряжение первичных и вторичных витков.
- n1 и n2 – их количество на обмотках первичного и вторичного типа соответственно.
Для определения площади сечения сердечника используют другую формулу: S=1,15 * √P, в которой мощность измеряют в ваттах, а площадь – в квадратных сантиметрах. Если сердечник, использующийся в оборудовании, имеет форму буквы Ш, показатель сечения вычисляют для среднего стержня. При определении витков в обмотке первичного уровня применяют формулу n=50*U1/S, при этом компонент 50 не является неизменяемым, в расчетах для профилактики появления электромагнитных помех рекомендуется ставить вместо него значение 60. Еще одна формула – d=0,8*√I, в которой d – это сечение провода, а I – показатель силы тока; она используется для вычисления диаметра кабеля.
Полученные при расчетах цифры доводят до круглых значений (например, расчетную мощность в 37,5 Вт округляют до 40). Округление допустимо исключительно в большую сторону. Все указанные формулы применяют для подбора трансформаторов, работающих в сети 220 Вольт; при сооружении высокочастотных линий используют другие параметры и расчетные методы.
Похожие статьи: